Continuous Sharpening of Hölder's and Minkowski's Inequalities
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولSharpening Geometric Inequalities using Computable Symmetry Measures
Many classical geometric inequalities on functionals of convex bodies depend on the dimension of the ambient space. We show that this dimension dependence may often be replaced (totally or partially) by different symmetry measures of the convex body. Since these coefficients are bounded by the dimension but possibly smaller, our inequalities sharpen the original ones. Since they can often be co...
متن کاملPseudoconvex Multiobjective Continuous-time Problems and Vector Variational Inequalities
In this paper, the concept of pseudoconvexity and quasiconvexity for continuous~-time functions are studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvexity assumptions, some relationships between Minty and Stampacchia vector variational inequalities and continuous-time programming problems are presented. Finally, some characterizations of the soluti...
متن کاملThe Sharpening of Some Inequalities via Abstract Convexity
One of the application areas of abstract convexity is inequality theory. In this work, the authors seek to derive new inequalities by sharpening well-known inequalities by the use of abstract convexity. Cauchy-Schwarz inequality, Minkowski inequality and well-known mean inequalities are studied in this sense, concrete results are obtained for some of them. Mathematics subject classification (20...
متن کاملA New Sharpening of the Erdös-mordell Inequality and Related Inequalities
The famous Erdös-Mordell inequality in geometric inequalities states the following: Let P be an interior point of a triangle ABC. Let R1, R2, R3 be the distances from P to the vertices A,B,C, and let r1, r2, r3 be the distance from P to the sides BC,CA,AB, respectively. Then R1 +R2 +R3 ≥ 2(r1 + r2 + r3), (1.1) with equality if and only if △ABC is equilateral and P is its center. This equality w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2005
ISSN: 1331-4343
DOI: 10.7153/mia-08-18